
2660 / . Am. Chem. Soc. 1983, 105, 2660-2667 

solid, 20 (46%): IR 1720-1650 (KTaH)), 1275, 1205, 1025, 940, 900, 
835, 740, 715, 695, 490 cm"1. Anal. Calcd for C23H39NPTa: C, 51.02; 
H, 7.26; Ta, 33.42 (mol wt 542). Found: C, 50.94; H, 7.08; Ta, 33.41 
((C6H6, Singer method) mol wt 550). 

Cp*Ta(NCMe3)(OCHMe2)2 (21). An NMR tube sealed to a 
ground-glass joint was loaded with CpTa(NCMe3)H2(PMe2C6H5) (17, 
75 mg, 0.038 mmol), acetone (59 torr in 25.3 mL, 0.080 mmol), and 0.3 
mL of benzene-rf6, and sealed with a torch. After 3 days at 25 °C and 
1 h at 80 0C, the volatiles were removed leaving 21: IR (C6H6) 1275 
(st, KTaNC)), 1215, 1120, 1030, 995, 980, 845, 740 cm"1. 

Cp*Ta(NCH2CMe3)(OCHMe2)2 (22). 22 was prepared from 
Cp*Ta(NCH2CMe3)H2(PMe2C6H5) (20, 75 mg, 0.14 mmol) and ace­
tone (150 torr in 33 mL, 0.27 mmol) by a procedure analogous to the 
synthesis of 21: IR (C6H6) 1280 (st, 1/(TaNC)), 1120, 995, 980, 860, 
840, 585 cm"1. 

CpTa(CH2NMe)Me(PMe3)H (23). A thick-walled glass reaction 
vessel with Teflon needle valve, charged with 1.86 g of Cp*Ta-
(CH2NMe)Me2 (3, 4.78 mmol), 5 mL of benzene, PMe3 (1100 torr in 
104 mL, 6.15 mmol), and 4 atm of H2, was stirred at 25 0C for 24 h. 
After the volatiles were removed, recrystallization from petroleum ether 
gave 1.01 g of red 23 (39%): IR 1680 (KTaH)), 1490, 1280, 1240 (st), 
1025, 955 (st), 935, 900, 720, 665, 480, 450. Anal. Calcd for 
C16H33NPTa: C, 42.58; H, 7.37; N, 3.10 (mol wt 451). Found: C, 
42.35; H, 7.15; N, 2.91 ((C6H6, Bernhardt) mol wt 478). 

I. Introduction 

The use of More O'Ferrall plots1 and Marcus rate theory2 for 
interpreting substituent effects on reaction rates has been wide­
spread in recent years.3,4 Both approaches have lent considerable 
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CpTa(CH2NMe)Me(OCHMe2) (24). A solution of Cp*Ta-
(CH2NMe)Me(PMe3)H (23, 25 mg, 0.046 mmol) and acetone (41 torr 
in 25.3 mL, 0.056 mmol) in 10 mL of petroleum ether was stirred at -80 
0C for 30 min and at 25 0C for 30 min. Removal of the volatiles left 
24, 70% pure (by NMR): 24 is extremely soluble in hydrocarbon sol­
vents: IR (C6D6) 1270, 1160, 1130 (st), 1000 (st), 970, 905, 850, 620 
cm-1. 
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insight into the nature of chemical reactions, and it would be 
worthwhile to explore the consequences of certain assumptions 
behind the More O'Ferrall plot. These assumptions can be shown 
to lead to a quantitative equation similar in many respects to the 
Marcus equation. 
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Abstract: "More O'Ferrall" plots have seen increasing use in recent years for qualitatively interpreting substituent effects 
on rates of a wide variety of reactions, including nucleophilic substitution, elimination reactions, proton transfers, carbonyl 
additions, sigmatropic shifts, and Diels-Alder reactions. In the present paper it is shown that the main idea behind the More 
O'Ferrall plot (geometric distortions along the reaction coordinate ("parallel" effects) and geometric distortions along orthogonal 
coordinates ("perpendicular" effects)) can be used to derive a quantitative expression for the reaction barrier that is very similar 
to the Marcus equation, now being applied to electron and proton transfer reactions, as well as nucleophilic substitutions. It 
is found that the perpendicular effects of the More O'Ferrall approach enter into the intrinsic barrier term of Marcus' equation. 
Application of this Marcus-like equation to cycloadditions and sigmatropic shifts shows that intrinsic barriers are a function 
of orbital symmetry constraints and are highly dependent on substituents. This large dependence can provide a mechanism 
for dramatic reductions in the barriers of both symmetry-allowed and symmetry-disallowed processes. 
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A. Marcus Equation. The Marcus equation is given by 

AG* - AG0* + 1Z2AG0 + (AG0)2/16AG0' (1) 

where AG' is the barrier of a reaction, AG0 is the free energy 
difference between reactants and products, and AG0* is the 
"intrinsic" barrier. The Marcus equation has generally been 
applied to group transfer reactions (e.g., electron, proton, atom, 
methyl transfer) which can be represented as 

A-B + C ^ A + B-C (2) 

A-B + A ;=* A + B-A (3) 

C-B + C <=± C + B-C (4) 

The "intrinsic" barrier, AG0*, has usually been taken to be the 
average barrier of the two symmetrical transfer reactions (eq 3 
and 4) and has been interpreted as the nonthermodynamic, or 
kinetic, contribution to the barrier of the unsymmetrical reaction. 
The xli&G° term represents the thermodynamic contribution and 
raises or lowers the kinetic component of the barrier according 
to whether the reaction is endergonic or exergonic. The first two 
terms of Marcus' equation are exact when the free energy of the 
transition state, A-B-C, is the average of the free energies for 
A-B-A and C-B-C4J"15 The third term, (AG")2/ 16AG0', 
represents an approximate correction for nonadditivity and depends 
on the relative magnitude of AG° and AG0*. 

The Marcus equation was originally derived to describe barriers 
to electron-transfer reactions by employing a weak overlap as­
sumption which is valid to the extent that transition-state inter­
actions between the orbitals of the reacting molecules are zero.2 

This condition appears to be appropriate to certain classes of 
electron-transfer reactions, and Marcus extended eq 1 to proton 
and atom transfers by demonstrating empirical correlations43 and 
by showing6 that the mathematical form of eq 1 is similar to the 
form of the BEBO equation,7 which is derived specifically for 
radical transfer processes. Somewhat later, it was shown40 that 
eq 1 could be obtained without the weak overlap approximation 
by applying equivalent group assumptions,8 which provide the basis 
for linear free energy relationships such as the Bronsted9 and 
Hammett equations,10 to the derivative of the free energy change 
with respect to a perturbational parameter. More recently, it has 
been shown" that Marcus' weak overlap approximation actually 
holds for first-order corrections to Hartree-Fock SCF wave 
functions, and, from certain relationships describing the response 
of the electronic kinetic energy to substituent effects, it has been 
possible to ObIaJn4J'1 a general barrier equation12 for which the 
Marcus equation and about a dozen other empirical equations4*1' 
are special cases. All of the equations give similar predictions 
for the barrier height. Even more recently, it has been shown that 
certain constraints (i.e., a "scaled symmetry relationship")13 on 
the form of a reaction coordinate function can lead to the Marcus 
relationship. Eckart's function14 exhibits the scaled symmetry 
relationship, and it has been known15'16 for some time that Eckart's 
function obeys eq I.17 
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Marcus' equation has seen widespread application to solution 
reactions,4 but, with few exceptions, the usual approach has been 
to measure AG* and AG0 and to calculate AG0* by assuming that 
the intrinsic barrier is independent of AG°.4a'b,d,e For many re­
actions there is no easy alternative.46 For n identity reactions (eq 
3 and 4) there are n(n - l)/2 unsymmetrical reactions (eq 2) and 
by measuring AG* of the latter, Marcus' equation can be used 
to obtain intrinsic barriers for each identity reaction. Since there 
are more experimental measurements than parameters to be 
calculated, independent checks on the calculated AG0* values are 
possible, and Lewis,4g and Pellerite and Brauman4h have provided 
excellent examples for solution-phase SN2 and gas-phase SN2 
reactions, respectively. Direct measurements of both identity 
barriers associated with one cross reaction have been rare: ex­
amples have been reported for proton transfer reactions between 
substituted fluorenyl anions and the corresponding hydrocarbons,4k 

for hydride transfer reactions4' and for proton-bound dimers of 
amines, neutral first- and second-row hydrides, and anions in the 
gas phase.4*''8 Computed SCF barriers and well depths of various 
identity and cross reactions have also been shown to follow the 
Marcus relationship reasonably well.4-"'1'"1'19 

The Marcus equation provides a simple picture of how ther­
modynamic and kinetic substituent effects combine to affect the 
overall barrier to a group transfer reaction. It can account for 
the rate-selectivity principle,20 and thermodynamic control when 
substituent effects dominate the AG0 terms in eq 1 and can 
account for kinetic control and the breakdown of the rate-se­
lectivity principle when substituent effects dominate the AG0* 
terms.4*-1 The degree of curvature observed in a Bronsted-type 
relationship can also be interpreted in terms of the relative 
magnitude of AG0 and AG0*.2'12,23'24 The Marcus equation has 
not been extensively applied to non-group-transfer reactions since 
there is no analogy to the identity reactions.21 The results which 
follow in section II, as well as previous work,4c'13 provide a 
foundation for the application of Marcus-like relationships to 
addition reactions, intramolecular rearrangements and other ex­
amples of non-group-transfer reactions. 

B. More O'Ferrall Plot. The Marcus equation is a relationship 
between the energy of a saddle point22 on a potential energy surface 
and the energy of the reactants or products. Some workers6'16 

have interpreted the derivative, dAG*/dAG° = a, as equivalent 
to the fractional displacement of the saddle-point position along 
the reaction coordinate, so that the Marcus equation can be 
interpreted to give some structural, as well as energetic, infor­
mation concerning the changes in geometry and energy which 
occur along the reaction coordinate.13 In this sense, the Marcus 
relationships can be considered40,13 as quantitative extensions of 
Hammond's postulate,23 which concerns structural perturbations 

(17) Eckart's function is given by 

AE' = AEe*/(\ + e*) + 4A£ 0 V/(1 + e*)2 

The barrier height is given by 

E* = AE0' + 1Z2AE + A£7l6A£0* 

The barrier position is given by A"* = In (ZV(I - 2')), where Z ' = '/2(1 + 
A£/4A£0')-

(18) D. H. Aue and M. T. Bowers, Gas Phase Ion Chem., 1, 8 (1979). 
(19) (a) J. R. Murdoch and D. E. Magnoli, Fifth IUPAC Conference on 

Physical Organic Chemistry, Santa Cruz, CA, August, 1980; (b) J. R. 
Murdoch and D. E. Magnoli, Abstracts, Second Chemical Congress of the 
North American Continent, Las Vegas, NV, Aug 1980, No. PHYS-63, 64. 

(20) B. Giese, Angew. Chem., Int. Ed. Engl, 16, 125 (1977). 
(21) Examples include carbonyl addition and 2 + 4 cycloadditions where 

no simple analogy for the identity reactions exists. However, intrinsic barriers 
for such cases can be obtained in other ways: for example, the Marcus 
equation can be used to obtain an intrinsic barrier for any reaction by aver­
aging the arithmetic and geometric means of the barriers in the forward and 
reverse directions. For reactions near thermoneutrality, the intrinsic barrier 
becomes the arithmetic mean of the barriers in the forward and reverse 
directions. Also, see ref 30. 

(22) In general, any stationary point will suffice. 
(23) G. S. Hammond, J. Am. Chem. Soc, 77, 334 (1955). 
(24) J. E. Leffler, Science (Washington, D.C.), 117, 340 (1953). 
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along the reaction coordinate in the limit of highly endothermic 
or exothermic reactions, and Leffler's principle,24 which deals with 
differential energy changes along the reaction coordinate. 

In spite of the success of Hammond's postulate and associated 
concepts, it has been apparent that structural perturbations in 
directions orthogonal to the reaction coordinate can often be 
significant.2'3 The first indication of this comes from a suggestion 
made in 1936 by Hughes, Ingold, and Shapiro25 in regard to S N I 
and SN2 substitution reactions at carbon. Hughes, Ingold, and 
Shapiro considered the effect of a perturbation on two arbitrary 
points of a potential surface. If the two points are separated by 
an energy minimum and the energy of one point (relative to the 
other) is raised by a perturbation, then the position of the minimum 
shifts toward the lower point. The opposite behavior will be 
observed for two points separated by an energy maximum. The 
effect is based on the analogous behavior of a parabolic minimum 
or maximum when a linear perturbation is superimposed. The 
analogy with a parabola/linear perturbation is of interest if the 
potential surface in the vicinity of the transition state can be 
approximated as a hyperbolic paraboloid and if the change in 
relative energy along a line connecting two points separated in 
energy by 5E, for example, can be taken to be a linear function 
of position between the two points. In 1967, Thornton33 formalized 
this approach by including a parabola and a linear perturbation 
for each internal degree of freedom associated with the potential 
surface. The two-dimensional version of this idea (a reaction 
coordinate and one orthogonal coordinate) has seen extensive 
qualitative use3 for interpreting substituent effects on kinetic 
isotope effects and on barriers to nucleophilic substitution reactions, 
elimination reactions, carbonyl additions, proton transfer reactions, 
sigmatropic rearrangements, and Diels-Alder reactions. Although 
the basic idea seems to have clearly originated with Hughes, 
Ingold, and Shapiro in 1936, Thornton (1967),3a Harris and Kurz 
(1970),3b More O'Ferrall (197O),1 Jencks (1972),3c Bruice 
(1976),3e Gajewski (1979),3l and others3 have made their own 
important contributions and have popularized use of the two-
dimensional potential surfaces which are currently known as More 
O'Ferrall plots. 

In some recent publications appearing in this journal, it has 
been implied that More O'Ferrall plots are a "more rigorous" 
approach than the Marcus equation and that the More O'Ferrall 
plots are a "conceptual advance" because of the so-called per­
pendicular effects (i.e., substituent effects on coordinates or­
thogonal to the reaction coordinate). Such remarks are not 
well-founded, since it can be shown (vide infra) that the per­
pendicular effects included in the More O'Ferrall plots are as­
sociated with the intrinsic barrier term of Marcus' eq.41 There 
have also been qualitative suggestions indicating certain similarities 
between the More O'Ferrall plot and the Marcus equation. For 
example, Jencks has noted that the magnitude of a shift in 
transition-state position is dependent on the curvature at the saddle 
point of the More O'Ferrall plot or on the magnitude of the 
"intrinsic barrier" of the Marcus equation,3f while Albery and 
Kreevoy have pointed out that the Marcus intrinsic barrier contains 
a sum of contributions arising from displacements along several 
orthogonal coordinates.38 However, the quantitative connection 
between the two approaches has never been detailed. 

II. Expression for the Energy and Position of the Stationary 
Point 

A. A Potential Energy Surface Function and Coordinates. The 
simplest potential surface exhibiting a stationary point with one 
negative second derivative and one positive second derivative is 
a hyperbolic paraboloid.26 Such surfaces, or plane sections of 
such surfaces, have been considered by Thornton,3a Kurz,16 

Jencks,3f and Gajewski3' in connection with analyzing perpendi­
cular and parallel substituent effects. It should be noted that while 
hyperbolic paraboloid surfaces give a stationary point corre-

(25) E. D. Hughes, C. K. Ingold, and U. G. Shapiro, J. Chem. Soc, 225 
(1936). 

(26) Y= ax2- by1 + ex + dy + e 

nt 

O1O 

Figure 1. Translation of reaction coordinate/orthogonal coordinate axis 
to «i = 1Z2, «2 = 1Ii- The illustrated structures are pertinent to a 3,3-
sigmatropic shift. The reactants are located at (1,0), the products are 
located at (0,1). Bond breaking without simultaneous bond formation 
leads to the pair of allyl radicals at (0,0), while bond formation without 
simultaneous bond breaking leads to the cyclohexane diradical at (1,1). 

E?o 

Figure 2. More O'Ferrall plot. When £,0° = £0i° and E00" = £,,", the 
barrier is given by E00* and the reaction coordinate corresponds to a 
straight line connecting (1,0) and (0,1). Total bond order is conserved 
(i.e., H1 + «2

 = I)-

sponding to a transition state or stable intermediate, there is no 
stationary point for the reactants, products or for the two reference 
structures located at the ends of the perpendicular coordinate 
(Figures 1 and 2). Furthermore, when the coordinate axes are 
expressed in terms of Cartesian coordinates, such surfaces bear 
little resemblance to potential energy surfaces generated by ab 
initio techniques27 or by empirical methods such as BEBO,7 

LEPS,28 or diatomics-in-molecules.29 Consequently, one could 
raise potentially serious objections as to whether the hyperbolic 
paraboloid, coupled with the linear perturbation, is an adequate 
basis for projecting the effects of perturbations on reactants, 
products, and the perpendicular reference structures (Figure 1) 
onto stationary points located in the central region of the surface. 
None of these potential problems have been dealt with in any detail 
in previous proposals concerning hyperbolic paraboloids as models 
for real potential energy surfaces. 

We30 have examined these questions from both empirical and 
ab initio viewpoints. The lack of stationary points for the reactants, 
products, and perpendicular reference structures is not a serious 
problem, since many ab initio potential surfaces27 also lack sta­
tionary points for these structures when the surfaces are expressed 

(27) C. F. Bender, S. V. O'Neil, P. K. Pearson, and H. F. Schaefer, III, 
Science (Washington, D.C.) 176, 1412 (1972). 

(28) (a) F. London, Z. Elektrockem., 35, 552 (1929); (b) S. Sato, /. 
Chem. Phys., 23, 592 (1955); (c) H. Eyring and M. Polanyi, Z. Phys. Chem., 
Abt. B. 12, 279 (1931). 

(29) (a) F. O. Ellison, J. Am. Chem. Soc, 85, 3540 (1963); (b) J. C. 
Tully, J. Chem. Phys., 64, 3182 (1976). 

(30) (a) J. R. Murdoch, D. E. Magnoli, and J. E. Donnella, James Flack 
Norris Award Symposium in Physical Organic Chemistry, 183rd Meeting of 
the American Chemical Society, Las Vegas, NV, March, 1982; (b) J. R. 
Murdoch and J. E. Donnella, J. Am. Chem. Soc, in press. 
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in terms of bond-order coordinates30 rather than Cartesian co­
ordinates. Furthermore, after transformation from Cartesian to 
bond-order coordinates, certain ab initio and empirical surfaces 
bear a strong resemblance to hyperbolic paraboloids in many 
respects. This includes the areas near the stationary point as well 
as near the reactants, products, and perpendicular reference 
structures. The primary discrepancies from the hyperbolic par­
aboloid involve differences in the appearance of the contour lines, 
pronounced flattening of the region near the stationary point, and 
a tendency for the reaction coordinate to follow an S-shaped curve, 
rather than the straight line corresponding to bond-order con­
servation along the reaction coordinate or the arc-shaped curve 
observed when the perpendicular reference structures are at 
different energies (Figure 2). These differences are least important 
when the stationary point is in the central region of the surface 
(/I1, /I2 —

 l/i< s e e Figure 2) or when the stationary point is close 
to one of the four corners (0,0; 0,1; 1,0; 1,1). For certain reactions, 
the differences are insignificant regardless of where the stationary 
point is located. The departures of real potential surfaces from 
hyperbolic paraboloids are important, and it would be a mistake 
to simply cast them aside, particularly when kinetic isotope effects 
or geometries are important considerations. This work will be 
reported in detail in a subsequent paper30b and, along with the 
examples reported here, illustrates that in spite of certain dis­
crepancies, hyperbolic paraboloids are not totally unreasonable 
as first- or zero-order approximations to real potential energy 
surfaces when the surfaces are expressed in terms of bond-order 
coordinates rather than Cartesian coordinates. Similar trans­
formations have been made31 by Morse32 in solving for wave 
functions of vibrational oscillators and by Eckart14 in solving 
quantum mechanical tunneling problems. 

B. Hyperbolic Paraboloid Potential Surface and Bond-Order 
Coordinates. A general hyperbolic paraboloid surface can be 
expressed in terms of two orthogonal coordinates (x0, y0) which 
for the present problem (Figure 1) can be taken to be unit vectors 
parallel with the orthogonal and reaction coordinates, respec­
tively.33 

£ = ax0
2 - by0

2 + cx0 + dy0 + e (5) 

The origin of the (x0, y0) coordinate system is at /I1 =
 1J2; n2 = 

»/2, and for X0, y0 = 0, -l/(2)>/2; 0, + l/(2)>/2; -1/(2)»/*, 0; 
+ l/(2)'/2, 0, respectively, E takes on the values £10, E01, E00, E11, 
respectively, where E10 is the energy34 of the reactants, E01 is the 
energy of the products, E00 is the energy of one perpendicular 

(31) Setting n = e'"^'^, the Morse function (ref 32) can be expressed as 
E = D1[^-In]. 

(32) P. M. Morse, Phys. Rev., 34, 57 (1929). 
(33) The cross term has been omitted. Note that it vanishes upon a 45° 

rotation: f(x0)(y0) = f[m2 sin 8 + /H1 cos fl)(-m, sin 8 + m2
 c o s ") = /" 

(//1,/H2[COS2 S - sin2 B] - /H,2(COS 8 sin 8) + /H2
2(sin 8 cos 8)) = IfIm1

2 -
m i )] 1A- The effect of including the cross term xj/B is to modify the quadratic 
coefficients of m, and m2. Including the X^y0 term modifies the nonlinear 
terms of eq 14 somewhat. Equations 12 and 13 become (note: /n, = n* - 1I2) 

(«2* - Vi) = W'Had- VTTC - VJd " be]/[Aab + f] (12a) 

("i* " '/2) = VY'H-ad + Vifc - VJd - bc]/[Aab+f] 

Equation 14 becomes 

AaA1 

D2 

AbB1 , AABf , IcB + IdA , 
D1 D1 D 

A = ad- Vifc 

B = -(be + V-Je) 

D = Aab+f 

(13a) 

(14a) 

(14b) 

(14c) 

(14d) 

(34) Following the theoretical treatment given earlier (ref 4j,l; 11-13), the 
surface is presented in terms of E (electronic energy where E = T + V„ + 
V& + ^nn)- Note that zero-point energies, enthalpy corrections, and entropy 
contributions are not specifically included, although empirical considerations 
(e.g., ref 4j) suggest that Marcus-type relationships may still operate for AH° 
and AG0. 

reference structure (Figures 1 and 2), and En is the energy of 
the second perpendicular reference structure. Furthermore, E 
= E0* for X0, y0 = 0,0 where E0* is a constant for each surface, 
but may vary from one surface to another. These values for *0, 
y0, and E yield 

a - E00 + En - 2E0 

b = 2E0* - {Em + E10) 

E u ~ E00 

E0x - E10 

(2)>/2 

e = E0* 

(6) 

(7) 

(8) 

(9) 

(10) 

Noting that the {x0, y0) and (/I1, n2) coordinate systems are rotated 
45° with respect to one another, E can be expressed in terms of 
the bond-order coordinate axes (/I1, /I2), as in Figure 1: 

E = 
a-b 

(«2 - Vi)2 + 5 T ^ ( I i - ^ ) 2 + (A + *)(«! - Vi)(Ii 2 v L '" 2 

~ ^ + <c + ^ ^ ( " 2 - '/>> + (C - <^("> " ^ + e 

(H) 

Setting d£'/d^0 = 0 and dE*/dx0 = 0, 

d c 
(n2* - Yi) = 

( V - 1A) = • 

2(2)'/22> 2(2)'/2a 

d c 
2(2Y'2b 2(2)x'2a 

(12) 

(13) 

where n2* and /I1* represent the coordinates of the stationary point 
in terms of a, b, c, d (eq 6-9).35a 

Substituting eq 12 and 13 into eq 11 gives the energy of the 
stationary point 

E* = 
(£0, -E10)

2 (En-E00)
2 

8(2£0* - (£01 + E10)) S(E00 + En- 2E0*) 
+ £0* 

(14) 

Following Thornton32 on adding a linear perturbation to the po­
tential surface, changes in the energies of the four corner points 
(Figures 1-3) will alter E0* according to35b 

E0 - E00* + 
En] + £11 + Eu 

En + En, + En1 
(15) 

(35) (a) Note that the first term (due to energy differences between 
reactants and products) in eq 12 and 13 changes /I1 and /I2 in opposite di­
rections, while the second term (due to energy differences between the two 
perpendicular reference structures) changes B1 and n2 in the same direction. 
For c = 0.0, bond-order conservation operates, (b) Thornton's treatment 
employs a symmetric inverted parabola with a stationary point (e.g., £oc') at 
/i = '/2 P'us a linear perturbation with a value of AE at n = 1. The total 
energy at/i = '/2 is given by £('/2) = £00' + xli^E< so that half of the linear 
perturbation contributes to E at n = l/2. In two dimensions, Thornton would 
have two linear perturbations, one corresponding to the reaction coordinate 
and the other corresponding to the orthogonal coordinate. At /1 = '/2. na 'f 
of the perturbation adds to E00* to give E('/2). In eq 15, the term corre­
sponding to Thornton's f2AE is VJ[^OI + £ i o _ ^oi° _ E\o°] while the term 
corresponding to half of the orthogonal perturbation is 1I2[En + E00- En" 
- E00']• Note that the quadratic surface used in the present treatment has 
five parameters and that these are defined by the four values of the corner 
points and the constraint that plane sections which connect the diagonal corner 
points of the parabolic surface will appear as symmetric parabolas plus a sum 
of linear perturbations which are associated with each orthogonal coordinate, 
just as in Thornton's model. Gajewski has used an alternate constraint which 
minimizes the least-squares deviations between the calculated and observed 
barriers (J. J. Gajewski, private communication). One effect of the J.J.G. 
constraint is that the parallel/perpendicular substituent effects are roughly 
one half of those in the Marcus/Thornton approach used here. A detailed 
analysis will be given elsewhere. 
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Figure 3. Effect of a perturbation on the energy of the transition state 
and on the reaction coordinate. Simultaneously raising the energy of the 
products relative to the reactants and increasing E00 shifts the transi­
tion-state structure toward products and toward the "perpendicular" 
reference structure at (1,1). The energy of the transition state increases 
from E00* to E*. The reaction coordinate deviates from the bond-order 
conservation path according to the dashed line. 

where .E0O* equals E0* for E0 1 = E10 = E0x" = E 1 0
0 and En = 

E00
 = E00" = En

0. The relationship between En, E00, E0x, E10 

and E 1 1
0 , E00

0, E0x
0, E10" is illustrated in Figures 2 and 3, and 

it should be noted that since En", E00", E01", E 1 0
0 are simply 

reference points their values can be chosen arbitrarily or to reflect 
physical quantities appropriate to an actual reaction. 

The relationship between eq 14 and 15 and Marcus ' equation 
can be seen by setting E1 0 (energy of reactants), E 0 1

0 , a n d E 1 0
0 

to zero,36 by setting E00* = AE00* and AE = E0x- ^io = E0x,
 a n d 

by substituting eq 15 into eq 14: 

AE2 

AE* = + 1AAE + 
16(AE00* + Y2[En + E00 - En" - E 0 0

0 ] ) 
AE00* + 1A[Eu + E00

 _ -En0 ~ E00
0] ~ 

EnzM (16) 
16(Y2[En

0 + E00
0] - AE00* - Y2AE) 

Rewriting eq 1 in terms of AE, etc. and comparing terms, it can 
be seen that Marcus' intrinsic barrier is given by 

AE0* = AE00* + Yi[En + E00 - En
0 - E00

0] (17) 

and that the last term on the rhs of eq 16 represents nonadditive 
contributions from energy differences between the perpendicular 
reference structures. 

AE* = AE2 /16AE0* + Y2AE + AE0*' (18) 

(36) Some caution needs to be exercised in using eq 16 since the last term 
involving (En - E00)

2 depends on how the change in AE takes place. A 
somewhat different surface will be obtained if the reactants are defined as the 
energy zero and the products raised in energy by AE than if the energy of the 
products is set to zero and the reactants lowered in energy by AE. Both 
surfaces involve the same change in A£, but note that the relationship between 
the parallel reference structures and the reactants or products is different in 
the two cases. This dependency of the potential surface on AE as well as the 
differences E01 - E00 and E01 - E11 is even more pronounced for Gajewski's 
surface (ref 3i). The fact that different surfaces may correspond to the same 
value of AE is not a violation of microscopic reversibility, as suggested in ref 
3i, and has precendents in other empirical potential energy surfaces such as 
BEBO,7 LEPS,28 and DIM.2* For example, in the BEBO surface,' E - VA(l 
- n)p* + Va(n)pB. For PA * PB, VA = VA° + S and VB = VB° gives A£ = 
VA - VB = VA° + 6 - V which is the same AE given by VA = VA° and VB 
= VB° - 6. However, VA = VA° + S; VB - VB° gives a different surface than 
VA = VA°\ VB = VB° - S and the values of n and E at the stationary point are 
slightly different. The main point is that AE, AE0* are sufficient for defining 
the parabolic surface (eq 5) only to the extent that the last term of eq 16 is 
negligible. In other cases, energies, enthalpies, or free energies of formation 
(or other measure of energy relative to the same reference for all reactions, 
e.g., free atoms) can be used in eq 14 and 15 to give a unique surface for each 
reaction. It should also be noted that Marcus' equation cannot be used for 
|Ai?| > 4A^0', and analogous limits will occur for this quadratic surface. See 
ref 41 for a discussion of these thermodynamic limits. 

AV = 
A V - (En - E00)

2/16[Y2(En
0 + E00

0) - AE00* - Y1AE] 
(19) 

In the limit of small changes in En and E00, AE0* = A£0*', and 
eq 18 reduces to Marcus' equation. Two important points emerge: 
(1) The energies of the perpendicular reference structures enter 
into the intrinsic barrier terms. (2) There are two intrinsic barrier 
terms. One (AE0*) depends on Af00' and the energies of the 
perpendicular reference structures and the other (AE0*') depends 
on AE00* and the energies36 of all four corner points. Both AE0* 
and AE0*' are expected to vary from reaction to reaction. 

III. Application to 3,3-Sigmatropic Shifts 
Gajewski has provided an extremely interesting application of 

the parallel/perpendicular perturbation effect in a series of 3,3-
sigmatropic rearrangements.31 His novel treatment is based on 
a simplified form of eq 11 which does not include the two quadratic 
terms in (n2 - V2)2 a nd («1 - l/2)

2. Partly because of this omission, 
it is necessary to introduce an arbitrary scaling factor31'37 for the 
energies of the two perpendicular reference structures. Gajewski 
has compiled data from the literature, and these have been used 
to calculate intrinsic barriers and overall barriers38 for various 
3,3-shifts (Table I). A£00* (43 kcal) is obtained from the 1,5-
hexadiene reaction and is used without change for the remainder 
of the reactions. The standard deviation between calculated and 
experimental barriers is about 3 kcal and is essentially identical 
with Gajewski's deviation obtained with one adjustable parameter. 
Considering that the energies of the perpendicular reference 
structures are crude estimates in most cases, the overall agreement 
seems satisfactory.39 

IV. Application to [2, + 45] Cycloaddition Reactions 
Gajewski has also applied the parallel/perpendicular idea to 

Diels-Alder reactions between cyclopentadiene and cyano-sub-
stituted ethylenes. Intrinsic barriers and calculated values of AE* 
(eq 18 and 19) for these reactions appear in Table II. The 
standard deviation between calculated and experimental barriers 
is about 1.3 kcal over a range of AE* from 29 to 14 kcal. The 
value for AE00* has been taken from the acrylonitrile addition 
reaction and used without change for the remaining reactions. The 
agreement between calculated barriers and experimental barriers 
seems reasonable39 in view of the assumption that all reactions 
have the same AG (-20 kcal) and that the a-cyano radical res­
onance energy (9 kcal) is strictly additive.40 

V. Discussion 
A. Intrinsic Barrier for the Hydrocarbon Reactions—Orbital 

Symmetry Constraints. AE00* can be interpreted as the intrinsic 
barrier associated with a convenient reference reaction, and in 
the present case this is chosen to be 1,5-hexadiene for the 3,3-shift 
and ethylene/cyclopentadiene for the 2 + 4 cycloaddition. The 
fact that AE00* is relatively close for the two reactions (43 vs.38 
kcal) is striking as is the fact that AE00* is relatively constant 
within each class of reaction. It is possible that a significant portion 
of the deviations between calculated and observed barriers can 
be attributed to nonconstant AE00* values for each reaction. 

AE00* represents the barrier for a hypothetical thermoneutral 
reference reaction where the two perpendicular structures are of 

(37) In Gajewski's original treatment, the scaling factor, P, is introduced 
by having the products at coordinates (P,P) instead of (1,1). An alternative 
interpretation is to replace £00 a n ^ -^n w ' t n ^oo^ a"d ExlP. 

(38) Equation 16 has been used as a simple expedient since for most of 
these examples, the differences mentioned in ref 36 are modest. Equations 
14 and 15 can be used as an alternative if total energies, heats of formation, 
energies of atomization, etc., are available. 

(39) Gajewski's surface exhibits the feature noted in footnote 36: two 
different surfaces are obtained when the energy of the products is raised x 
kcal or when the energy of the reactants is lowered x kcal. The discrepancies 
between the observed AG"s and those calculated from Gajewski's equation 
increase somewhat if the definitions of reactants and products are reversed: 
a = 5.3 kcal for 3,3-sigmatropic shifts, and a = 5.6 kcal for 2 + 4 cyclo-
additions. 

(40) The deviations are consistent with a leveling effect in the resonance 
energy per nitrile group for tri- and tetracyanoethylenes. 



Table I. Application of Marcus' Equation to 3,3-Sigmatropic Shifts 

1,5-hexadiene 
2-phenyl-1,5-hexadicnc 
2,5-diphcnyl-l,5-hexadiene 
3,3-dicyano-l ,5-hexadicnc 
3,4-dimethyl-l,5-hexadiene (threo) 
3,4-diphenyl-l,5-hexadicnc (threo) 
c;s-l ,2-divinylcyclobutanc 
allyl vinyl ether 
allyl phenyl ether 
allyl acetate 
C(S-1,2-divinylcyclopropane 
allyl silyl enol acetate 
3-oxyanion-1,5-hexadicne 

" Reference 3i (cited from literature), kcal. 
M'2/16A£'0

 + . e AE AT* = 'I2AE. fAENK*: 

^ ' o b s d 

41 
35.5 
31 
32 
39 
31 
28 
33 
42 
45 
21 
<25 
- 2 6 

to 
A^calcd 

40.9 
34.5 
27.0 
27.8 
36.8 
26.5 
22.4 
27.9 
43.9 
44.5 
20.0 
26.6 
24.9 

Standard deviation =3 .1 
.(Zf11-Zf 

is the energy of substituted cyclohexyl-l,4-diyl. ' (M2 -
O0)

1116['I2(E1,-

'I2)- r = d / ( ( 2 ) " 2 

*bWe' 
0.0 
0.0 
0.0 
0.04 
0.03 
0.04 
0.68 
0.5 
0.04 
0.00 
0.8 
0.7 
0.7 

kcal. b E< 
+ F °) -
^ ' J 0 0 f 2b), eq 12 

d AZfAT*e AENK*f 

0.0 -0 .1 
0.0 1.0 
0.0 -3 .0 

-2 .3 -1 .0 
- 2 . 3 0.0 
-2 .3 -1 .2 
-9 .5 -1 .8 
-8 .5 -0 .1 

2.5 -2 .6 
0.0 -1 .0 

-10 .0 -0 .8 
-10 .0 -0 .1 

-9 .5 - 0 . 3 

juations 18 and 19. c AE< 
'/2.AZ-]. SAEA^ = AE01, 

• ' (I1- 'h)K =-cK(2Y'2 

•ale 

2a] 

A 4 ' M * 8 

41.0 
35.5 
30.0 
31.0 
39.0 
30.0 
33 
36 
44 
45.5 
30.0 
36.0 
34.0 

.,} is disse 
+ 0.5[Zfn 

>,eq 12. ' 

v a,h 
' ' O O 

57 
57 
57 
37 
53 
35 
34 
47 
47 
52 
35 
47 
43 

E„a<h 

53 
42 
31 
53 
53 
53 
60 
53 
69 
67 
53 
53 
53 

icted into four contribut 
i p _ p 

^ l ' OO I j 1] 

* (H2 - ' / , ) = 

o _ u- Oi , 
^ oo 1 • 

= ("2 -Va)K 

AEa 

0.0 
0.0 
0.0 

-4 .5 
-4 .5 
-4 .5 

- 1 9 
- 1 7 

+ 5 
0 

- 2 0 
- 2 0 
- 1 9 

(M2-V2)T1' 

0.00 
0.00 
0.00 

-0 .02 
-0 .01 
-0 .02 
-0 .07 
-0.06 

0.01 
0.00 

-0 .08 
-0 .07 
-0 .07 

ions: AZfjyT , AEAT , 
" E„ is • 
+ ( n 2 -

("2 - 'I2)Id 

0.04 
0.13 
0.23 

-0 .23 
0.00 

-0 .14 
-0 .14 
-0 .03 
-0 .24 
-0 .13 
-0 .09 
-0 .03 
-0.05 

AENKK AEAK 

(n2-V2)fe 

0.04 
0.13 
0.23 

-0 .25 
-0 .01 
-0 .16 
-0 .21 
-0 .09 
-0 .23 
-0 .13 
-0 .17 
-0 .10 
-0 .12 

*. dAENT* = 
the energy of two substituted allyl radicals;E,, 
V2)T1Cq 12. 

Table H. Application of Marcus' Equation to 2 + 4 Cycloadditions 

cyclopentadiene plus: 

ethylene 
acrylonitrile 
fumaronitrile 
maleonitrile 
1,1-dicyanoethy lene 
1,1,2-tricyanocthy lene 
1,1,2,2-tetracyanoethy lene 

A^obsd " 

- 3 0 
24.0 
21.3 
21.1 
17.8 
16.3 
13.9 

A'-calcd 

28.9 
24.0 
20.1 
20.1 
18.3 
15.3 
11.4 

AZ + c,d 
•NT 

0.7 
0.7 
0.9 
0.9 
0.9 
1.0 
1.2 

*EAT*e 

- 1 0 
- 1 0 
- 1 0 
- 1 0 
- 1 0 
- 1 0 
- 1 0 

AZfjvK
+ f 

0.0 
-0 .4 

0.0 
0.0 

-1 .7 
-0 .4 

0.0 

AZfAK+* 

38.2 
33.7 
29.2 
29.2 
29.2 
24.7 
20.2 

F a,h 
'• oo 

40 
40 
31 
31 
40 
31 
22 

f,- a,h 
' ' 11 

40 
31 
31 
31 
22 
22 
22 

AE" 

- 2 0 
- 2 0 
- 2 0 
- 2 0 
- 2 0 
- 2 0 
- 2 0 

C= , - V2)T'" 

-0 .07 
-0 .07 
-0 .09 
-0 .09 
-0 .09 
-0 .10 
-0 .12 

(I1 - V2)K
7' 

0.00 
-0 .10 

0.00 
0.00 

-0 .19 
-0 .10 

0.00 

(«2 - V2)
fe 

-0 .07 
-0 .17 
-0 .09 
-0 .09 
-0 .27 
-0 .20 
-0 .12 

" e Sec Table I. h E„„ = energy of structure formed by bond formation across C2 of ethylene and C, of cyclopentadiene. Zf11 - energy of structure formed by bond formation across C1 of ethylene and 
C4 of cyclopentadiene. Sec Table 1. 
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equal energy. Orbital symmetry constraints do not exert an 
appreciable influence on AE for the overall reaction, but should 
be a primary consideration in determining the relative magnitudes 
of AE00* for various reactions. Symmetry-allowed processes would 
be expected to have smaller values of AE00* compared to analogous 
symmetry-disallowed reactions. Barriers for both classes of re­
action could be modified by changes in energy of the perpendicular 
structures and by changes in AE (Figure 2). 

B. Overriding Orbital Symmetry Constraints. 1. Substituent 
Effects on the Intrinsic Barrier. One interesting implication of 
eq 18 and 19 is that stabilization of the perpendicular structures 
relative to the reactants and products will reduce the intrinsic 
barrier for the reaction (Figure 2). More specifically, if each 
perpendicular structure is stabilized to the same extent, then the 
intrinsic barrier will be reduced by the same amount. In addition, 
if one structure is stabilized by an additional amount, then the 
intrinsic barrier is further reduced by half of this increment. For 
large energy changes in the perpendicular structures, the non-
additive term of eq 19 may be important. 

The relative response of the perpendicular structures to sub­
stituent effects has an important bearing on the concerted/non-
concerted nature of sigmatropic shifts and cycloadditions. If one 
of these structures is stabilized to a greater extent, the transition 
state will shift toward the more stable of the perpendicular 
structures. According to eq 19, the response of the intrinsic barrier 
lags behind the stabilization of the perpendicular structure, so that 
for sufficiently large perturbations, the transition state energy will 
approach the energy of the more stable perpendicular structure 
and the nonconcerted pathway may be energetically competitive 
with the concerted process. When both perpendicular structures 
are stabilized relative to products and reactants, the transition 
state tends to remain in the middle portion of the potential surface, 
and the intrinsic barrier for the concerted process is reduced. 
Stabilization of the perpendicular structures raises the interesting 
possibility of overriding orbital symmetry constraints by lowering 
the intrinsic barrier for reaction. The intrinsic barrier for the 
ethylene/cyclopentadiene reaction (Table II) is about 38 kcal and 
is reduced by about 18 kcal after replacement of the four hy­
drogens of ethylene with four cyano groups. Stabilization of the 
perpendicular structures might also be achieved by complexation 
with Lewis acids41 or transition metals,42 and it is not difficult 
to imagine situations where the stabilization would be sufficient 
to lower the transition state to the point where the reaction 
proceeds through one or more intermediates. Baldwin43 has re­
viewed several examples of symmetry-disallowed reactions which 
proceed with thermally accessible barriers. In each case, the 
perpendicular reference structures, radicals formed by cleavage 
of C-C (T or IT bonds, are stabilized by extended ir systems. 
Another possible mechanism for intrinsic barrier stabilization is 
subadjacent orbital control which has been proposed by Berson44 

in order to account for facile, 1,3-sigmatropic shifts (suprafa-
cial/retention) which are symmetry-forbidden reactions. 

2. Thermodynamic Substituent Effects. Another mode of 
reducing the barrier of the overall reaction is the incorporation 
of a favorable change in AE° or AG0. An interesting example 
is the conversion of hexamethylprismane to hexamethylbenzene 
which is a symmetry-forbidden process. The reaction is ~90 kcal45 

downhill thermodynamically and has a barrier of 33 kcal. By 

use of Marcus' equation, the intrinsic barrier (i.e., the barrier for 
the hypothetical thermoneutral isomerization) is about 71 kcal,21 

and so the 90 kcal of exothermicity corresponds to 38 kcal of 
stabilization for the transition state. Note that the overall barrier 

(41) J. Sauer and J. Kredel, Tetrahedron Lett., 731 (1966). 
(42) W. Reppe, N. Kutepow, and A. Magin, Angew. Chem., Int. Ed. Engl., 

8, 727 (1969). 
(43) J. E. Baldwin, A. H. Andrist, and R. K. Pinschmidt, Jr., Ace. Chem. 

Res., 5, 402 (1972). 
(44) J. A. Berson, Ace. Chem. Res., S, 406 (1972). 
(45) R. B. Woodward and R. Hoffmann, "The Conservation of Orbital 

Symmetry", Verlag Chemie, GmbH, Weinheim/Bergstr., 1970. 

of 33 kcal is comparable to the some of the barriers for the 
"allowed" 3,3-sigmatropic shifts. It is also significant that the 
intrinsic barrier for this thermally "forbidden" reaction is about 
30 kcal higher than the intrinsic barriers (Tables I and II) for 
the 3,3-shift (1,5-hexadiene) and the 2 + 4 cycloaddition 
(ethylene/cyclopentadiene). The cycloadditions reported in Table 
II are downhill by 20 kcal, and about half of this is involved in 
stabilization of the transition state (see Table II). Similar effects 
can be noted for the 3,3-shifts seen in Table I. 

C. Hughes-Ingold-Shapiro Effect. An Interpolation Scheme. 
The HIS effect is basically an interpolation scheme where per­
turbations to energies of four reference structures propagate 
linearly over a quadratic surface. The four structures need not 
be stable intermediates, but experimental determination of their 
response to perturbations is certainly simplified if this is the case. 
As mentioned earlier, it has been found30 that the quadratic 
approximation is not bad as long as the surfaces are expressed 
in bond-order coordinates. Higher order terms are significant, 
and the consequences for predictions based on the simple parabolic 
approximation will be detailed elsewhere.3013 

The linear propagation of substituent effects on the reference 
structures is also an assumption which has been tested in some 
detail.30 By following the energy change along the reaction co­
ordinate for certain ab initio SCF surfaces, it has been found that 
AE propagates along the reaction coordinate as a sigmoid function 
which is rather close to linear. Thus, the two major assumptions 
of the present paper, as well as previous work,16,30'46 have been 
shown to be qualitatively sound on an empirical basis. It should 
also be mentioned that Dunn46 has used an interpolation scheme 
where the edges of the surface are defined as fourth-order poly­
nomials, and the center portion of the surface is constructed by 
interpolation from the opposing edges. 

D. Intrinsic Barriers and Potential Energy Surfaces. The 
intrinsic barrier is rapidly becoming the focal point for studies 
of substituent effects on reaction rates4'30 and is an essential part 
of the comparison of barriers of reactions of different thermo­
dynamics.4'30 An important result of the present paper is that the 
Marcus equation can now be applied to pericyclic reactions (as 
well as group transfer processes4), and consequently, intrinsic 
barriers can be obtained from AE* and AE without reference to 
the details of the potential energy surface and without explicit 
recognition of the perpendicular reference structures (section V.B.I 
and ref 30). On the other hand, the link between the More 
O'Ferrall plot and Marcus equation permits interpretation of the 
intrinsic barrier in terms of substituent effects on specific struc­
tures47 in analogy with the intrinsic barriers derived48"11'6 from the 
Marcus equation and identity barriers of group transfer reactions. 
Consequently, the More O'Ferrall plot and the Marcus equation 
are two highly complementary and qualitatively equivalent ap­
proaches for expressing the effects of substituents on reaction 
barriers. 

The treatment of these rather remarkable phenomena is also 
proceeding from a more rigorous and fundamental direction. In 

(46) B. M. Dunn, Int. J. Chem. Kinet., 6, 143 (1974). 
(47) The More O'Ferrall plot has generally been implemented with 

structures of "real" compounds or intermediates representing the corner points. 
An analogous method has recently been popularized (ref 47a,b) and is based 
on valence bond configurations (or resonance forms) which serve as the ref­
erence structures. Substituent effects may alter the relative energies of the 
configurations, and this in turn will affect the relative mixing of each valence 
bond configuration into the total wave function for a specific nuclear con­
figuration on the potential surface. Changes in the relative mixing of the 
valence bond configurations can result in perturbations to the energy, nuclear 
geometry, charge distribution, etc. at the transition state. The MOF plot and 
the configuration-mixing model are similar in that they both give qualitative 
predictions concerning energy (higher vs. lower) and geometry (shorter bond 
length vs. longer bond length) as a function of substituents on reference 
structures (MOF) or valence bond configurations (ref 47a,b). A possible 
significant difference between the two methods is whether the reference 
structures are actual energy states of a particular nuclear configuration or 
valence bond configurations whose combination approximates the real energy 
states of a system. Even this distinction is somewhat hazy. For more detail, 
see (a) N. D. Epiotis, "Theory of Organic Reactions", Springer-Verlag, 
Heidelberg, 1978. (b) S. S. Shaik and A. Pross., J. Am. Chem. Soc, 104, 
2708 (1982). Recognition of multiple electronic states may be important in 
the use of MOF plots, particularly when the states are close in energy (see 
comments in footnote w of Table I in ref 3i). 
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previous papers," a theory of nuclear substitution has been de­
veloped with the aim of providing a quantum mechanically sound 
framework for interpreting changes in molecular properties in 
terms of molecular structure. At present, this theory has been 
carried out to first-order wave function corrections (at the Har-
tree-Fock level), and a number of established chemical concepts 
have been shown to follow analytically from the first-order 
treatment. These include Benson's equivalent group schemes,8 

Pauling's covalent radii and electronegativity relationships,48,49 

free energy relations49 such as the Hammett10 and Drago equa­
tions,50 and various rate-equilibrium relationships12 including the 

(48) L. Pauling, "The Nature of the Chemical Bond", 3rd ed., Cornell 
University Press, Ithaca, New York, 1960. 

(49) J. R. Murdoch, unpublished. This result can be derived from equa­
tions published in ref 11a. 

I. Introduction 
Position of Stationary Points on Potential Energy Surfaces. 

Recently, Miller' proposed a simple relationship for predicting 
the barrier position along the reaction coordinate, and his proposal 
was tested against other methods2"5 of computing the barrier 
position. Miller concluded that his equations compare favorably 
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M. Polanyi, Z. Physik. Chem., Abt. B, B12, 279 (1931); (c) S. Sato, J. Chem. 
Phys., 23, 592 (1955). 
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(4) (a) F. O. Ellison, J. Am. Chem. Soc, 85, 3540 (1963); (b) J. C. Tully, 

J. Chem. Phys., 64, 3182 (1976); (c) J. C. Tully, ibid., 58, 1396 (1973). 
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Science Washington, D.C.), 176, 1412 (1972); (b) B. Liu, /. Chem. Phys., 
58, 1925 (1973); (c) C. F. Bender, B. J. Garrison, and H. F. Schaefer, III, 
ibid., 62, 1188 (1975); (d) P. Siegbahn and B. Liu, ibid., 68, 2457 (1978); 
(e) R. E. Howard, A. D. McLean, and W. A. Lester, Jr., ibid., 71, 2412 
(1979). 

Marcus equation.2t4c Preliminary results indicate that behavior 
derivable from parabolic/linear interpolation models is also closely 
associated with first-order perturbations, and consequently, this 
aspect, as well as extension to higher-order perturbations, is un­
dergoing close examination. 
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with "the best of the methods for computing the barrier position", 
and this includes the ab initio approaches. Miller's relationship 
is simple and predicts that the barrier position (X*) depends only 
on the height of the barrier (A£*) and the energy difference 
between products and reactants (AE): 

Miller derived this relationship by representing the reactant and 
product sides of the reaction coordinate by two separate spline 
functions (double-knot spline functions, DKSF) which are joined 
smoothly at the energy maximum. Miller's treatment leaves the 
choice of function for the splines completely open but imposes 
several constraints on the parameters so that the barrier function 
will have derivatives of zero at the initial and final points (X = 
0,X= 1, respectively) and at the transition state (X = X*). The 
values of the barrier function, E(X), are constrained to pass 
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Abstract: Miller has derived a remarkably simple relationship for predicting the barrier position along a reaction coordinate 
in terms of the reaction thermodynamics (AE) and the barrier height (AE*). This relationship correlates very well with a 
wide variety of ab initio and empirical potential energy surfaces, and these correlations have prompted an examination of the 
conditions leading to Miller's result. It is shown that Miller's conditions alone (some properties of double-knot spline functions, 
arc-length minimization) are not sufficient, but that a scaled symmetry relationship (plus Miller's conditions) is sufficient. 
Miller's result has been obtained by using different spline functions to represent different sections of the reaction coordinate, 
and it would be of general interest to determine whether the scaled symmetry relationship can be observed for nonspline functions 
which span the entire reaction coordinate. By use of a general reaction coordinate function, E(X) = 1Z2AE(I + H1 (X)) + 
AE0*(I - h2(X)), it is found (AE ^ 0) that a necessary and sufficient condition for the scaled symmetry relationship is h2(X) 
= h{(X)2. It is also found that the barrier height follows the Marcus equation, and deviations from the Marcus equation can 
be understood in terms of deviations from the "square" relationship (Zi2 = Zi]2). The present work emphasizes that the Marcus 
equation does not depend on specialized assumptions such as intersecting parabolas, inverted-parabola-plus-linear-perturbation, 
intersecting Morse functions, etc., but derives from a more general relationship (i.e., the scaled symmetry relationship or equivalently, 
the "square" relationship; Zi2 = Zi1

2). It is shown that the scaled symmetry relationship follows from a second-order expansion 
of the reaction coordinate in terms of suitable functions (e.g., a Fourier series or bond order). It is found that for h2 = Zi,2, 
the barrier position (X*) is dependent on the degree of nonlinearity in Zi1(A"). For example, the sigmoid function, Zi1(JV) = 
XP-(I- X)"/[XP + (1 - X)P], leads to the Marcus relationship for the barrier position (X* = >/2 + A£-/8A£0* = [1 + U 
- AE/AE*)1 ^2]'1) for p = 1 and to the Miller relationship (X* = [2 - AE/AE*]'1) forp = '/2. The scaled symmetry relationship 
emphasizes the relationship between h2 and Zi1, rather than the specific form of the barrier function, as the key factor in governing 
the response of the barrier position and height toward changes in the overall thermodynamics of a reaction. The present results 
provide a sound theoretical foundation for extending the application of Marcus-like expressions from electron, proton, and 
group transfers to all one-step reactions, including pericyclic processes, carbonyl additions, fragmentations, cheletropic reactions, 
conformational equilibria, isomerizations, and so forth. 
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